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Abstract

In-situ analysis is becoming increasingly important in the evaluation of existing as well as novel materials and components. In
this domain, specialists require answers on questions such as: How does a process change internal and external structures of a
component? or How do the internal features evolve?

In this work, we present a novel integrated visual analysis tool to evaluate series of X-ray Computed Tomography (XCT) data.
We therefore process volume datasets of a series of XCT scans, which non destructively cover the evolution of a process by in-situ
scans. After the extraction of individual features, a feature tracking algorithm is applied to detect changes of features throughout
the series as events. We distinguish between creation, continuation, split, merge and dissipation events. As an explicit tracking is
not always possible, we introduce the computation of a Tracking Uncertainty. We visualize the data together with the determined
events in multiple linked-views, each emphasizing individual aspects of the 4D-XCT dataset series: A Volume Player and a 3D
Data View show the spatial feature information, whereas the global overview of the feature evolution is visualized in the Event
Explorer. The Event Explorer allows for interactive exploration and selection of the events of interest. The selection is further used
as basis to calculate a Fuzzy Tracking Graph visualizing the global evolution of the features over the whole series.

We finally demonstrate the results and advantages of the proposed tool using various real world applications, such as a wood
shrinkage analysis and an AlSiC alloy under thermal load.
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1. Introduction and Motivation

In recent years a clear trend has formed in industry towards
designing tailored materials and components as well as enhanc-
ing existing ones. No matter if it is the understanding of specific
manufacturing procedures or the aging of components under
extreme conditions, a characterization of both internal and ex-
ternal structures is essential. In order to gain insight into materi-
als and components, non-destructive testing (NDT) techniques
are the methods of choice, in order to reuse the specimens for
further processing or testing.

A well known NDT method is 3D X-ray Computed Tomog-
raphy (XCT). XCT non-destructively generates a 3D volumet-
ric representation of the specimen from a series of 2D X-ray
attenuation images. The specimen is placed on a rotary plate
between X-ray source and detector. The detector acquires 2D
projection images at each angular position of the rotary plate,
recording the attenuation of the X-rays through the specimen.
After acquiring the series of 2D projection images, a 3D volu-
metric dataset is reconstructed. XCT allows the domain experts
to gain new insights into material systems and has thus become
a highly attractive method in various engineering disciplines.

When using a series of XCT scans, even processes may be
investigated for in-situ analyses, e.g., over time or under certain
load conditions. We refer to the resulting 4D-XCT data as series
where each step corresponds to a single dataset, respectively a
single XCT scan.

For in-situ analysis in our work, XCT scans are acquired at
predefined stages of a process. The process is either continuing

during the whole data acquisition (in-situ), e.g., continuously
heating the specimen and XCT scanning at predefined temper-
ature steps, or the process is interrupted (interrupted in-situ),
e.g., keeping load conditions constant during the XCT scan and
then continuing the process. In either case analyzing the indi-
vidual steps and their correlations leads to an improved under-
standing of the material or its manufacturing procedure.

Regarding the analysis and visualization of industrial XCT
data, various techniques are used for analyzing a specimen at a
defined condition (at a single step), but not a process the spec-
imen is exposed to. Thus, in this work we go one step further
and consider this new dimension: the evolution of a specimen
being subjected to an ongoing process. This additional dimen-
sion leads to new challenges for both analysis and visualization:
Features have to be identified and tracked throughout the com-
plete dataset series. Such features may be voids, inclusions,
particles, etc.. Features may as well change throughout the pro-
cess, e.g., voids grow and merge under thermal loading. We
refer to these changes as events which need to be determined
from one step of the process to the next regarding the creation,
continuation, split, merge and dissipation of features. Thus an
event may be considered as the connection of features from one
step the other. Since features also may move over time, an ex-
plicit tracking is not always possible. For example, Schöbel et
al. [1] investigated voids in SiC particle reinforced aluminum
(AlSic) during a heating cycle. In this application it is of high
interest, how the voids decrease during heating and increase
while cooling down. Figure 1 shows cross-sectional images of
two adjacent time-steps of the cooling process from 400 ◦C (A)
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Figure 1: Voids in SiC particle reinforced aluminum (AlSic). (A and
B) Cross-sectional images of two adjacent time-steps of the cooling
process from (A) 400 ◦C down to (B) 300 ◦C. (C) Overlay of (A) and
(B) with a zoom-in indicating that void 2 has to be assigned either to
void 1 or to void 3.

down to 300 ◦C (B). The voids were extracted in their work by
thresholding and colored in red (A) and yellow (B). Figure 1
(C) depicts an overlay of (A) and (B) as well as a zoom-in in-
dicating that void 2 has to be assigned either to void 1 or 3. As
void 2 touches void 1 and slightly overlaps with void 3, a dis-
tinct assignment to void 1 or 3 is not possible. To address this
problem, we introduce the computation of a Tracking Uncer-
tainty in our work. The Tracking Uncertainty is calculated for
all potential features in a certain neighborhood and based on the
features’ volume overlap and volume ratio. As a result, the void
tracking in Figure 1 (C) is fuzzy and void 2 is assigned to both
voids 1 and 3, each with a specific Tracking Uncertainty. We
refer to this tracking approach as Fuzzy Feature Tracking. To
analyze the Fuzzy Feature Tracking results, novel visualization
and interaction approaches are required.

In the following sections we present a visual analysis frame-
work to explore 4D-XCT dataset series and to handle the differ-
ent aspects of its spatial information as well as the evolution of
this information throughout the series. We apply our approach
to show results on two real-world in-situ applications. The first
application area is the shrinkage of beech wood, where we fo-
cus on the voids between wood fibers during a drying-out pro-
cess. In a second analysis we present results of a void formation
in AlSiC alloys during a heating up and cooling down cycle.

2. Workflow and Task Analysis

When analyzing 4D-XCT dataset series, users currently have
to search interesting features in 3D renderings or by scrolling
through 2D slice images. The user needs to search for corre-
sponding features in all other datasets manually, mostly in the
same way he has found the interesting feature (e.g., by scrolling
through slice images). Simple feature characteristics such as
extents may be extracted with rulers or similar tools. This pro-
cedure is highly subjective and even for experienced domain
specialists it is hard to find features of interest in all steps of
the dataset series. Apart from the subjectivity, such a work-
flow is rather time-consuming and error prone. In this work, we
aim to overcome these drawbacks by designing a visual analysis
tool for interactive exploration of 4D-XCT dataset series. We
collaborated in this project with various company partners and
material scientists in application areas such as analysis of metal
alloys and wood analysis. Together with these domain partners
we defined a detailed list of requirements for our tool. Although

the applications are quite different, the experts’ requests con-
verged in the following questions: How are feature properties
distributed at a certain step in the dataset series? How many
features are created, continuing, splitting, merging or dissipat-
ing at a specific step? Which features are involved in a split
or merge event and where are they located? How does a fea-
ture evolve regarding its properties and in which events is it
involved? Based on these demands, we derived the following
main tasks:

T1: Determine events (creation, continuation, split, merge,
dissipation) from one step to the next.

T2: Visualize spatial information including the extracted fea-
tures for each step.

T3: Visualize an overview of the events and the correspond-
ing feature properties.

T4: Visualize an overview of the events and how they connect
features from one step to the next.

To solve these tasks, we implemented a visual analysis tool
which integrates the following features:
Fuzzy Feature Tracking: Features are tracked from one step
to the next (T1). To provide feature tracking information along
the whole dataset series. If features are created, we determine
continuing, splitting, merging or dissipating. As the events are
not clearly distinguishable in all cases a Tracking Uncertainty
is computed for each event.
Volume Player: Combining the need for visualizing spatial
feature information (T2) and for providing an overview of events
(T3), volume blending is applied on two subsequent steps in the
dataset series, rendering smooth transitions between the steps.
3D Data View: 3D renderings of all steps arranged in a row
show all determined features (T2). Individual features may be
color-coded according to the assigned event type.
Event Explorer: The combination of an events overview and
the feature properties is achieved in the Event Explorer (T3).
The Event Explorer consists of a row of scatter plots, where
each plot provides a snapshot of a single step in the series.
Events may be plotted according to user-defined feature prop-
erties as well as their event type. All views are linked together,
so a selection in the Event Explorer updates all other views and
allows for a detailed exploration of the data. For example, a
merged feature of interest may be filtered in the scatter plot.
Then its origin as well as how it evolves may be traced along
all steps in the series in the spatial domain as well as throughout
the complete series.
Fuzzy Tracking Graph: The Fuzzy Tracking Graph visualizes
the evolution of features combined with their events with re-
spect to each other (T4). The uncertainty information per event
is integrated using Fuzzy Feature Tracking and shows more
than one assigned feature for an event. Therefore, the opac-
ity of the vertices and edges of the Fuzzy Tracking Graph are
adjusted according to the Tracking Uncertainty of the events.

3. Related Work

Regarding visual analysis of industrial XCT data, several
approaches have been presented recently. Fritz et al. [2] pre-
sented a method to analyze graphite particles in ductile iron and
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steel fibers in reinforced sprayed concrete. Reh et al. [3] intro-
duced an approach to explore pores in carbon fiber reinforced
polymers. The FiberScout [4] allows domain experts to explore
the characteristics of fiber reinforced polymers. All these tech-
niques share the fact that they analyze a single condition of a
specimen, but not a process the specimen is exposed to.

Regarding the analysis of dataset series (mainly time-series)
a wide-spread variety of approaches have been presented. Aigner
et al. [5] overview time-oriented visualizations from many ap-
plication domains. In literature approaches such as ThemeRiver [6]
or Stacked Graphs [7] cover research questions such as the evo-
lution of thematic variations over time within a large collection
of documents or the presentation of large datasets to a general
audience. Waser et al. [8] presented World Lines for steering
multiple simulation runs. In their approach tracks sharing a
common time axis are shown in a tree. Bajaj et al. [9] pre-
sented the hypervolume visualization for informative visualiza-
tion of scalar fields embedded in n-dimensional spaces. Liu et
al. [10] presented an approach for data mining on time series
in which automatic time series model identification and auto-
matic outlier detection are employed. Additional related work
is found concerning morphological data analysis of time series
data [11, 12]. As all these approaches are not capable of ana-
lyzing 3D volumetric data these techniques are not applicable
for 4D-XCT applications.

In the medical domain several papers report on 4D data
analysis. Köhler et al. [13] published an approach for the ex-
traction of vortex flow in the aorta and pulmonary artery incor-
porating line predicates. This technique evaluates time-resolved
and spatial phase-contrast magnetic resonance imaging data (4D
PC-MRI) and facilitates reliable measuring of 3D flow for qual-
itative and quantitative analysis of the patient-specific hemody-
namics. A related method for pre-clinical cardiovascular re-
search provides tools to interactively explore 4D blood-flow
data and to depict essential blood-flow characteristics [14]. Both
methods share the same imaging modality with temporal reso-
lution varying from 14 to 21 time-steps with about 50 ms dif-
ference between each time-step. In the field of industrial XCT
yet no 4D-XCT visual analysis techniques have been proposed
so far.

As we apply and test our methods on the data of different
real world applications such as AlSic alloys and beech wood,
we consider feature extraction as being out of scope for this
work and refer the reader to the segmentation algorithms used
in the corresponding papers [1, 15].
Feature Tracking: Based on the extracted features, an essen-
tial pre-processing stage is the tracking of features along the
dataset series. Altendorfer [16] tracks voids in the AlSiC alloys
dataset series. After registering the volumetric datasets and a
subsequent segmentation of the voids overlaid void contours
are visualized. As this tracking is not automatic, it is insuffi-
cient for our domain experts’ needs. For automatic tracking of
features two general approaches are considered as most rele-
vant for this work: One approach is to track features based on
voxel data. For instance, Silver et al. [17] track 3D features
in computational fluid dynamics datasets. The spatial overlap
of the features is calculated with boolean difference operations

of the voxel data. The second approach is to calculate feature
properties such as size and position of each feature and per-
form the tracking based on the extracted properties. Samtaney
et al. [18] introduced such a tracking method. In which features
in 2D and 3D computational fluid dynamics simulations are cal-
culated. The features are then tracked by finding potential cor-
respondences in adjacent time-steps and by subsequently com-
paring their feature properties. As the voxel-based approach is
more memory- and time-consuming, we decided to use feature
properties for our Fuzzy Feature Tracking and extend it with
the calculation of the Tracking Uncertainty.
Tracking Graph Visualization: After tracking features in the
dataset series the tracking result needs to be visualized in an
intuitive way. Besides coloring of tracked features along time-
steps [17], a directed acyclic graph is a common representation
to show the evolution of a feature over time [18, 17]. For visu-
alizing such graphs an appropriate graph layout using a single
spatial dimension to indicate time or evolution is called track-
ing graph. Each feature is represented by a track. Tracks may
start, continue, merge, split or end with respect to the corre-
sponding feature events creation, continuation, split, merge and
dissipation. We are using a tracking graph in this work as well.
When visualizing a tracking graph the main challenge is found
in minimizing the edge crossings between the different steps.
Widanagamaachchi et al. [19] used tracking graphs in a sys-
tem for the exploration of combustion simulations. They imple-
mented a median heuristic approach to solve their edge crossing
minimization problem. As their solution showed reasonable re-
sults even for large graphs, a median heuristic [20] was used
as well minimizing the edge crossings in our Fuzzy Tracking
Graph.
Uncertainty Visualization: To communicate information on
the calculated Tracking Uncertainty, an adequate technique for
uncertainty visualization is needed. In the domain of industrial
X-ray computed tomography several approaches have been re-
cently published with regard to uncertainty visualization. Heinzl
et al. [21] presented a workflow for the analysis of multi-material
components in terms of probability and uncertainty. With MOb-
jects [3] an approach was introduced for the visualization of
mean objects aggregating internal structures in carbon fiber re-
inforced polymers. Amirkhanov et al. [22] focused in their
work on fuzzy metrology of real-world components. As the
component surface is not explicit in an XCT scan due to arti-
facts and noise, a certain positional uncertainty in the data is
given. Uncertainty is encoded by varying the thickness of ref-
erence shapes, as well as by using boxplots as extension to tol-
erance widgets. In a different domain Collins et al. [23] have
presented a system to support decision-making of automated
speech-recognition results, encoding uncertainty in graphs. Typ-
ically such systems present a best-guess result to the user al-
though deviating results may be correct. In this solution, the
authors visualize the recognized sentence as well as alterna-
tive words in a lattice graph. Each recognized word is repre-
sented by a vertex showing the word in the label. Uncertainty
is encoded here by the vertex position, fill hue and a border
transparency. For our Fuzzy Tracking Graph visualization we
applied the idea of encoding uncertainty on the vertices. Con-
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Figure 2: Fuzzy Feature Tracking to find probable corresponding features for A in B. (1) Radial search at the centroid position of ai in B. (2)
Volume overlap calculation for each probable feature in B based on bounding boxes. (3) Volume ratio calculation for each probable feature in B.
(4) Tracking Uncertainty calculation for each correspondence from a1 to the probable features b1, b2 and b3 in B.

sidering the graph layout with minimized edge crossings in our
Fuzzy Tracking Graph, we omit the uncertainty encoding by
changing the vertex position. But we color vertices and edges
according to their event type and encode the Tracking Uncer-
tainty by varying the opacity.

4. Preprocessing

Specimens may change their size during the 4D-XCT scans
of a process (e.g., an alloy specimen expanding under thermal
load) and in consequence also features may change or move. To
compensate on these changes, the datasets need to be registered
with each other. In general, registration techniques may be split
into rigid techniques requiring affine transformations between
fixed and moving image [24] and non-rigid techniques which
also deal with local feature deformations [25]. For the dataset
series analyzed in this work, the underlying processes are global
processes and thus the specimens and features are expected to
show uniform movement in all directions. In addition, the in-
tervals between the steps in our dataset series are short. So
movements of specimens and their features are either limited
or do not exist at all. Thus, a rigid registration is sufficient for
our application scenarios. We apply mutual information based
registration as presented by Mattes et al. [25] to account for de-
viations of greyvalues in the XCT scans of our dataset series.
If the process to be analyzed leads to deforming structures or
features moving or expanding in one direction, i.e., in the case
of tensile tests, the registration component needs to be replaced
with deformable registration techniques. After registration, the
features are extracted using thresholding methods [15, 1]. A
connected-components filter using a 26-connectivity labels the
features uniquely. Thus, the extracted features consist of sets
of labeled voxels within a regular volumetric grid. Finally, the
properties of interest, such as feature volume, extent, and cen-
troid are calculated for all features in a dataset. These prepro-
cessing steps are executed for all datasets in the series.

5. Fuzzy Feature Tracking

One of the main tasks in this work is to track features within
a 4D-XCT dataset series. For each feature all probable corre-
spondences need to be determined and one of the five events
creation, continuation, split, merge and dissipation needs to be

assigned. We thus calculate for each correspondence between
two features a simple Tracking Uncertainty based on the indi-
vidual feature properties. The Tracking Uncertainty makes use
of the volume overlap as well as the volume ratio of a feature
and its correspondences: Two features with the same volume
at the same position have a low Tracking Uncertainty, whereas
two features with different sizes at diverse positions lead to a
high Tracking Uncertainty. Figure 2 illustrates the proposed
determination of correspondences for a feature a1 in 2D: Con-
sider A and B as two adjacent steps in the dataset series. Let ai

be a feature in dataset A with a number of nA features and b j

be a feature in dataset B containing nB features. For each fea-
ture ai in A a corresponding feature b j in B has to be found and
an event assigned. For each feature all corresponding features
are stored in a list of correspondences. Solid lines show fea-
tures in A whereas the dotted lines highlight features in B. The
following steps are processed in sequence:
Radial search: A radial search with radius r is performed at
the center of ai in dataset A, where r is user-defined. Found
corresponding features for ai are stored in correspondences.
Volume overlap calculation: As our algorithm is based on fea-
ture properties and in order to reduce calculation times, the vol-
ume overlap O(ai, b j) is calculated using bounding boxes. The
result is normalized to 1.
Volume ratio calculation: The volume ratio R(ai, b j) of two
features ai and b j is calculated dividing the smaller volume of
the features ai and b j by the larger one.
Tracking Uncertainty calculation: Based on the volume over-
lap O(ai, b j) and ratio R(ai, b j) a Tracking Uncertainty U(ai, b j)
is calculated.

U(ai, b j) = 1 − (O(ai, b j)wo + R(ai, b j)wr). (1)

As the material behavior of how features may change their size
in the dataset series is dependent on the used materials and
application scenarios, O(ai, b j) and R(ai, b j) can be weighted
with the user-defined weights wo and wr, where wo + wr = 1.
Following this sequence we have identified the probable cor-
respondences for all features from A to B. For the following
event assignment, we also need to identify the correspondences
from B to A and repeat the steps above in the other direction.
Having all correspondences from A to B and from B to A, we
go through the correspondences and assign the event types (see
Algorithm 1 regarding event assignment).
Creation: A creation event is assumed, if a feature is present
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in B without a corresponding feature in A. This is valid for a
feature b j if b j.correspondences().size() = 0. In this case, a cre-
ation event is assigned.
Continuation: Features which are present in A and which have
a correspondence in B continue from one step to the next. Here
we decide between two options. If only one corresponding fea-
ture b j for ai exists, so ai.correspondences().size() = 1 is valid,
we assign the continuation event. If ai.correspondences().size()
> 1, either a split event or a continuation event is possible. As
a feature may change its size or position from A to B, we in-
troduce two user-defined thresholds tO and tR to consider these
changes. If tO ≤ O(ai, b j) and tR ≤ R(ai, b j) is valid, a continu-
ation event is assigned, otherwise a split event is used.
Split: A feature in A can split into two or more features in B.
This is valid if ai.correspondences().size() > 1, tO > O(ai, b j)
and tR > R(ai, b j).
Merge: Two or more features from A merge to a feature in B
if bi.correspondences().size() > 1, tO > O(ai, b j) and tR > R(ai,
b j) is valid.
Dissipation: A feature disappeared, if it is present in A and no
correspondence is found in B. So if ai.correspondences().size()
= 0, we assign a dissipation event.
For the datasets used in this work, all calculations are performed
in 3D. We apply the Fuzzy Feature Tracking on each step of the
dataset series and its adjacent one. The found correspondences
over the whole series are the basis of our visual analysis system
described in the following Section.

6. Visual Analysis of 4D-XCT Data

Our tool features multiple linked-views to fulfill the tasks
as identified in section 2. Each of the individual views em-
phasizes a certain aspect of the dataset series. Figure 4 shows
the graphical user interface of the implemented tool. The tool
is implemented in our custom analysis framework using ITK,
VTK and Qt toolkits. The Fuzzy Feature Tracking results are
calculated for all dataset series within several seconds on an
Intel Dual Xeon E5-2667 workstation allowing for interactive
analysis.
Volume Player: The Volume Player shows control elements
to traverse the different steps of a dataset series (see Figure 4
(A)). In a list steps of interest may be selected. When playing
the selected sequence, the corresponding volumetric datasets
are shown in a 3D renderer. As this may lead to coarse transi-
tions in the rendering, we integrated volume blending to enable
smooth transitions. Volume blending may be applied on both
raw data and labeled data showing selected features and is fa-
cilitated by setting linear transition functions for two adjacent
steps t(n) and t(n + 1). The opacity for t(n) is decreased over

Figure 3: Five volume blending steps between the two steps t(30 min)
and t(60 min) of the wood dry-out process dataset series.

Data: Datasets A, B with features and correspondences
Result: Assigned events
forall Features ai in A do

if ai.correspondences().size() = 0 then
SetEvent(Dissipation);

else if ai.correspondences().size() = 1 then
SetEvent(Continuation);

else if ai.correspondences().size() > 1 then
forall Features b j in ai.correspondences() do

if tO ≤ O(ai, b j) and tR ≤ R(ai, b j) then
SetEvent(Continuation);

else
SetEvent(Split);

end
end

end
end
forall Features b j in B do

if b j.correspondences().size() = 0 then
SetEvent(Creation);

else if b j.correspondences().size() = 1 then
SetEvent(Continuation);

else if b j.correspondences().size() > 1 then
forall Features ai in b j.correspondences() do

if tO ≤ O(ai, b j) and tR ≤ R(ai, b j) then
SetEvent(Continuation);

else
SetEvent(Merge);

end
end

end
end

Algorithm 1: Algorithm for assigning events.

time whereas the opacity for t(n+1) is increased. This approach
leads to a smooth transition between t(n) and t(n + 1). Figure 3
shows an example of the wood dry-out process, namely five vol-
ume blending transitions between the two steps t(30 min) and
t(60 min).
3D Data View: The 3D Data View depicts a series of labeled
data as 3D renderings in a row mimicking a film strip view of
the series (see Figure 4 (B)). In 3D renderings for each time-
step, the spatial information for all individual features is shown.
For the interaction with the data, rotation, translation and zoom-
ing functions are available. The interactions are connected along
all renderers. For the visualization transfer-functions are used.
As event types were assigned to all features in the Fuzzy Fea-
ture Tracking, we color the features according to the assigned
event types. Shading is disabled in the renderers, as it would
deteriorate the perception of small features. If a selection in the
Event Explorer is done, the 3D Data View is updated. Unse-
lected features are either shown in gray color with low opacity
as context information or completely hidden.
Event Explorer: To show a global overview of events and fea-
ture properties, a row of scatter plots is used in the Event Ex-
plorer (one for each step in the dataset series see Figure 4 (C)).
In the scatters plot the events assigned to features in the Fuzzy
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Figure 4: 4D-XCT visual analysis tool consisting of four linked-views: (A) Volume Player. (B) 3D Data View. (C) Event Explorer. (D) Fuzzy
Tracking Graph. (1) A selection in the Event Explorer leads to an update (2 and 3) of the 3D Data View and the Fuzzy Tracking Graph.

Feature Tracking are visualized as colored points. Each event
type is set to a color. The scatter plots may be tailored to the
user’s preferences and the analysis task. The axes show user-
defined feature properties, e.g., feature volume or Tracking Un-
certainty, and may be switched to log scale if needed. In the
applications shown in Section 7 the number of features vary
from 6 to 195 per step but also higher numbers of events are
supported. As this number may be higher for other applica-
tions, filtering event types is possible to avoid visual clutter of
too many points in the plots. Furthermore, the opacity of the
plotted points is adjustable, separately for each event type. Re-
garding interaction techniques, selecting, panning and zooming
into the plots facilitate a detailed analysis of interesting clus-
ters. Finally the tool allows a selection of events. As all views
are linked, a selection of an event (see Figure 4 (1)) leads to
an update of the 3D Data Views and the Fuzzy Tracking Graph
(see Figure 4 (2 and 3)).
Fuzzy Tracking Graph: The Event Explorer shows an overview
regarding the events assigned to features in the Fuzzy Feature
Tracking. The Fuzzy Tracking Graph (see Figure 4 (D)) ex-
pands this overview with the evolution of the features being
tracked and connected over the whole dataset series. One or
more events may be selected in the Event Explorer (see Fig-
ure 5(1)). Based on the selection, all corresponding features in
the subsequent and adjacent steps are used to build the graph.
In the initial graph layout, all vertices of corresponding fea-
tures are grouped regarding their step and stacked in Y direc-
tion. The steps are arranged in discrete layers along the spatial
dimension in X direction to indicate their evolution. We refer
to the vertex position in a layer as rank of the vertex. As the
vertices have no specific rank order in Y direction, edges may
cross and thus deteriorate visual perception of how events are
connected (see Figure 5(2)). For this reason we employ edge-
crossing minimization based on mean heuristics by Gansner et
al. [20] (see Figure 5 (3)). In their approach vertex positions
in each layer are permuted to minimize edge crossings in the
graph. Spline control points for the edges as their algorithm is
for graphs where edges can connect vertices in ranks that are
not adjacent. Regarding our data we added a further constraint:
Features may not skip a step and therefore edges can only con-
nect vertices from adjacent ranks. For that reason we omitted

spline control points. In the final step, we encode the event
types and the Tracking Uncertainty (see Figure 5 (4)). We use
the colors of the event types as in the other views for coloring
the vertices and the edges of the graph. If an edge connects
events with different event types, a color gradient is used. The
Tracking Uncertainty is visualized through the opacity of the
vertices and edges.

7. Results and Evaluation

We apply our proposed tool on two real world applications
which are wood shrinkage analysis during dryout and an AlSiC
alloy under thermal load.
Wood Shrinkage Analysis: Taylor et al. [15] observed the
shrinkage behavior of European beech wood at the micro-scale.
Wood consists of wood fibers. When drying out, voids in-
between the fibers grow and merge through the cell walls of
the fibers. The key aspect of the wood dry-out analysis is to
track how these voids grow and merge over time. Therefore the
dry-out process of wet wood was investigated in-situ with XCT.
The XCT measurements were performed on a GE phoenix|xray
nanotom with a 180 kV X-ray tube. The X-ray source current
was set to 275 µA and, the voltage to 50 kV, and the integra-
tion time of the detector to 125 ms. 700 projections were ac-
quired for each scan. The resulting datasets was 256 x 256 x
256 voxels in size using a voxelsize of 5.67 (µm)3. The full se-
ries consists of 25 volumetric datasets. The relative humidity
in the sample chamber was between 21 % and 19 % at a tem-
perature between 21.8 ◦ C and 22.6 ◦ C. A 3 x 3 median filter
was used for smoothing the data. The datasets scanned after 15,
20, 25, 30 and 60 minutes of the dry-out process show the most
significant changes of the voids between the wood fibers. The
voids and were extracted with the automatic thresholding algo-
rithm as proposed by Otsu [26]. Figure 4 shows the results of
our analysis. In the last step of the Event Explorer, two merge
events with a high volume were observed. Thus we selected
both one after the other. Figure 4 shows the updated Fuzzy
Tracking Graphs which give an overview, of how the voids were
created and merged over time. The maximum of 92 events in
step 1 led to 92 stacked nodes in the Fuzzy Tracking Graph and
thus to visual clutter. The tracking results are however trace-
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Figure 5: Calculation and visualization of the Fuzzy Tracking Graph: After an (1) event selection in the Event Explorer, (2) a tracking graph is
built and the (3) edge crossings are minimized. Then (4) event types and Tracking Uncertainty are encoded.

Figure 6: Results of the AlSiC dataset series: (A) 3D Data View of a void during a heating and cooling cycle (30 ◦ C → 200 ◦ C → 300 ◦ C →
400 ◦ C → 300 ◦ C → 190 ◦ C → 50 ◦ C). (B) Fuzzy Tracking Graph showing two areas (1 and 4) with encoded Tracking Uncertainty. (2 and 3)
Highlighting of an interesting split (2) and merge (3) event for the sequence (300 ◦ C→ 400 ◦ C→ 300 ◦ C).

able because of the used coloring of event types. The varying
Tracking Uncertainty can be explained as follows: Voids only
originate in-between an uniform arrangement of wood fibers
and thus many of them have nearly the same size before merg-
ing with others. Furthermore a high number of voids appear
within small regions. Our result shows how the voids grow in
the dataset series. During the dry-out process the large features
merge from many smaller voids between the wood fibers as ex-
pected. Our domain experts further found using our tool that
voids do not to merge across the barrier of an annual growth
ring of the tree (see Figure 4 (1,4)).
AlSiC Alloys under Thermal Load: Schöbel et al. [1] in-
vestigated a heating cycle of SiC particle reinforced aluminum
(AlSic). This material is of high industrial interest as it offers
the high thermal conductivity of a metal with the low thermal
expansion of a ceramic. Especially micro-voids in this mate-
rial system and their evolution are of interest for the domain
specialists. For the scan series, the material was analyzed un-
der thermal load with synchrotron tomography at the ESFR
ID15A beam-line in Grenoble. The specimen was heated up
from 30 ◦ C to 400 ◦ C and cooled down to 50 ◦ C. As a result a
dataset series covering the thermal cycle 30 ◦ C → 200 ◦ C →
300 ◦ C → 400 ◦ C → 300 ◦ C → 190 ◦ C → 50 ◦ C was
acquired. The resulting scans show an extent of 400 x 400
x 400 voxels at an isotropic voxel size of 1.4 (µm)3. We fo-
cussed on a region-of-interest with a size of 61 x 61 x 61 vox-
els showing a representative void area for our analysis. During
this thermal cycle the volume fraction of micro-voids change.
Voids decrease during heating and increase while cooling down.
As these voids influence the thermal expansion of the material,
their changes in size are of high interest. As the whole process

of how the void splits and merges is of high interest for our
domain experts, we did not filter the data by selecting specific
events. Figure 6 (A) shows the 3D Data View with all seven
steps. The features are colored according to their assigned event
type. Figure 6 (B) shows the Fuzzy Tracking Graph of the
whole dataset series. Two areas (see Figure 6 (1 and 4)) with
encoded Tracking Uncertainty are highlighted. In the first step
three features (see Figure 6 (1)) were created and assumed to
merge in the second step, each with a different Tracking Un-
certainty. Figure 6 (4) shows how new micro-voids are created
and no continuing features in the adjacent steps are found. Re-
garding the application domain, Figures 6 (2 and 3) show an
interesting split (2) and merge (3) event during the heating and
cooling cycle from 300 ◦ C up to 400 ◦ C and down to 300 ◦ C.
Selecting individual events in the Event Explorer was not nec-
essary, as the number of micro-voids in the dataset series was
low, showing between 6 and 20 events in a step. Especially the
split event in Figure 6 (2) during heating and the merge event
in Figure 6 (3) while cooling down show exactly which micro-
voids are involved in this process and thus fully answers the
questions of the domain experts.

8. Conclusions and Future Work

We have presented a visual analysis framework for the ex-
ploration of 4D-XCT dataset series. Based on a detailed task
analysis, our tool was designed to address the different aspects
of spatial data exploration and exploration of the dataset series
itself. We extract individual features together with their prop-
erties track and visualize them between the steps of the dataset
series. We assign each feature a corresponding event, i.e., cre-
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ation, continuation, split, merge and dissipation and compute a
Tracking Uncertainty between adjacent steps. For the visual-
ization and analysis of this data, we introduced a 3D Data View
mimicking a filmstrip view of 3D renderings for each dataset
showing the spatial feature information. An Event Explorer
shows the global overview of the dataset series in the form of
scatter plots, one for each step. A Fuzzy Tracking Graph ex-
tends this concept to investigate the events’ evolution through-
out the series. We encode the Tracking Uncertainty by modu-
lating the opacity of the nodes and edges. With the presented
tool, an interactive analysis is facilitated by selecting events of
interest in the Event Explorer which leads to an update of the
3D Data View and the Fuzzy Tracking Graph. As all our views
are linked, event selections highlight corresponding features in
the 3D Data View. We finally demonstrated our tool on the two
real world applications of wood shrinkage analysis and AlSiC
alloys under thermal load. For future work we will focus on
further visual encodings for the Tracking Uncertainty as well as
strategies to avoid visual clutter in the Fuzzy Tracking Graph.
In addition we aim to analyze further in-situ applications such
as tensile tests of fiber reinforced composites with our tool.
Limitations. Fuzzy Feature Tracking is designed to work with
the data subjected to linear transformations. If changes between
adjacent stages are very significant, this leads to the decreased
precision. Visualization capacities of the Tracking Graph are
limited in this respect and, during the visualization of large
amount of features, the cluttering appears.
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multi-material components using dual energy ct. In: Oliver Deussen
Daniel Keim DS, editor. VMV 2008, Vision, Modeling and Visualization.
ISBN 978-3-89838-609-8; 2008, p. 179–88.

[22] Amirkhanov A, Heinzl C, Kuhn C, Kastner J, Gröller E. Fuzzy CT
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