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Figure 1: ManyLands: a visualization application to support the exploration and analysis of 4D dynamical systems trajectories. The ca-
pabilities of ManyLands are based on interaction and smooth, animated navigation through phase space. We use the metaphor of traveling
across (a) 4D HyperLand, (b) 3D SpaceLand, and (c) 2D FlatLand. Additionally, we employ (d) TimeLines to represent each variable of the
dynamical system across time, and (e) compasses to facilitate the analysis of segments of the trajectories.

Abstract
Mathematical models of ordinary differential equations are used to describe and understand biological phenomena. These
models are dynamical systems that often describe the time evolution of more than three variables, i.e., their dynamics take place
in a multi-dimensional space, called the phase space. Currently, mathematical domain scientists use plots of typical trajectories
in the phase space to analyze the qualitative behavior of dynamical systems. These plots are called phase portraits and they
perform well for 2D and 3D dynamical systems. However, for 4D, the visual exploration of trajectories becomes challenging, as
simple subspace juxtaposition is not sufficient. We propose ManyLands to support mathematical domain scientists in analyzing
4D models of biological systems. By describing the subspaces as Lands, we accompany domain scientists along a continuous
journey through 4D HyperLand, 3D SpaceLand, and 2D FlatLand, using seamless transitions. The Lands are also linked to 1D
TimeLines. We offer an additional dissected view of trajectories that relies on small-multiple compass-alike pictograms for easy
navigation across subspaces and trajectory segments of interest. We show three use cases of 4D dynamical systems from cell
biology and biochemistry. An informal evaluation with mathematical experts confirmed that ManyLands helps them to visualize
and analyze complex 4D dynamics, while facilitating mathematical experiments and simulations.

CCS Concepts
• Human-centered computing → Scientific visualization; Visual analytics; Web-based interaction;
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1. Introduction

During the last decades, mathematical modeling and simulations
have emerged as important resources to gain a better understand-
ing of the function and dynamics of complex biological and bio-
chemical processes. Guided by experiments, mathematical models
of biological processes are formalized as large systems of ordinary
differential equations (ODEs) describing the time evolution of bio-
chemical species [KLW∗16]. Important examples include dynami-
cal systems describing glycolytic oscillations [KS10], i.e., a repet-
itive biochemical fluctuation in the concentration of metabolites,
mathematical models for the cell division cycle [KS16], and models
for the explanation of mechanisms behind bipolar disorder [Gol11].

The exploration and analysis of the mathematical behavior of
these systems by mathematical domain scientists is anticipated to
generate new knowledge on the underlying biological phenomena.
This is especially significant for the development of new models
that describe biological processes more accurately. Typical and per-
tinent mathematical questions of biological interest are the exis-
tence and stability of equilibria, periodic oscillations, and switch-
ing phenomena in the behavior of the investigated systems.

Temporal patterns and mathematical behaviors are analyzed us-
ing dynamical systems theory. Approaches within this area focus
on a qualitative analysis of the behavior of dynamical systems,
instead of seeking explicit computations of solutions. Geometric
techniques like phase space analysis study the flow of dynamical
systems and the geometry of the phase space, which depicts biolog-
ically meaningful solutions, or trajectories [Chi06, GH83]. Within
the current workflow, phase portraits, i.e., representations of typ-
ical trajectories in phase space, are employed for 2D and 3D sys-
tems. A 2D phase portrait is shown in Figure 2.

Many biological processes are modeled by 4D dynamical sys-
tems [KS15]. For 4D systems, phase portrait analysis becomes
challenging. The current technology adopted by mathematical do-
main experts involves generating and analyzing static 2D or 3D
phase portraits—subspace projections of 4D dynamical system tra-
jectories. This is done, e.g., in MATLAB [Lyn14], or DYNAM-
ICA within Wolfram Mathematica [KM02]. The juxtaposition of
the 2D or 3D phase portraits provides limited insight, as certain
complex patterns can be revealed only in the 4D space. Besides,
mathematicians sometimes generate their own hand-drawn illus-
trations to compensate for the limitations of the available tech-
nology, to navigate across subspaces, to demonstrate interesting
phenomena in their systems, and to externalize their findings and
proofs [DR96, KS11]. To link their hand-drawn illustrations to
computer-generated 2D or 3D phase portraits and to reconstruct
the 4D space, the experts rely on spatial imagination. The current
workflow is depicted in Figure 3.

The contribution of this paper is the design and implementation
of ManyLands. It is a web-based application that supports mathe-
matical domain scientists in understanding and analyzing the math-
ematical behavior of biologically meaningful 4D dynamical system
trajectories. It allows them to discover new knowledge within their
systems and to illustrate their findings for externalization and ed-
ucation purposes. ManyLands offers an interactive and integrated
workflow for exploring and analyzing 4D dynamical systems tra-
jectories, as shown in Figure 3 in the rightmost column.

2. Background of 4D Biological Dynamical Systems

A dynamical system is characterized by the relationship between
state variables and their time derivatives, i.e., it can be represented
as a system of ODEs given by:

x′ = f (x), x(0) = x0, x ∈ Rn. (1)

This allows from a given initial state x0 of the system to com-
pute the future (and past) states according to the dynamical law
f [Chi06,GH83]. Since it is usually impossible to derive an explicit
formula for the solution of a nonlinear equation, dynamical sys-
tems theory has proven to be a powerful resource for understanding
qualitative features of trajectories through phase space analysis.
Examples of dynamical systems are shown in Section 6.1, and their
mathematical descriptions are provided in our repository [AKS∗].

Each of the n independent variables of the system defines a coor-
dinate axis in the corresponding n-dimensional phase space. In the
context of biological systems, we focus on 4D dynamical systems
and their 4D phase space, while the variables x in Eq. 1 represent
molecular concentrations (or numbers) within a cell, i.e., concen-
trations of enzymes or proteins. The dynamics of the system rep-
resent changes in these concentrations. If x(t) is a solution of the
system, x(t0) defines at each time t0 a point in the phase space.
As the point changes with time, the entire solution x(t) traces out
a curve, or trajectory in the phase space, as depicted in Figure 2.
By this, solutions correspond to geometric objects in phase space.
For instance, resting states (when variables do not change) corre-
spond to equilibria points, and oscillations to so-called limit cycle
curves. Nowadays, numerical computations of solutions are com-
monly used to analyze how the system states evolve over time. In
particular, numerical simulations of solutions are used as a tool to
guide theoretical phase space analysis.

Although all solutions could be mathematically interesting, there
are several biological restrictions. For instance, there are no neg-
ative concentrations. Therefore, only few, biologically meaningful
trajectories are explored and analyzed at the end. Observing the
geometry of these trajectories in phase space using phase portraits
allows mathematical domain scientists to understand important dy-
namics of their systems, and potentially, of the underlying modeled
processes [Chi06, GH83]. Examples of dynamics arising in biol-
ogy, i.e., changes in concentrations, include switch-like behaviors
and periodic oscillations. For instance, the activity of a protein is
“off” (inactive), i.e., the corresponding variable has a value that
equals zero (or close to zero)—otherwise, it is “on” (active).

Figure 2: Illustration of a 2D ODE system of a cellular interaction,
the time series of its variables (x1,x2) and its phase portrait.
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Figure 3: Comparison of the current analysis workflow of 4D dynamical system trajectories vs. ManyLands. The current workflow (blue)
requires mental linking between its components, whereas ManyLands (orange) provides mathematical domain scientists with an integrated
solution, based on seamless transitions and animated navigation.

3. Domain Requirements and Tasks

In Section 1, we discussed the current workflow of mathematical
domain scientists and its limitations regarding the analysis of 4D
dynamical systems. Mathematical domain scientists need strategies
for completing the following tasks:

(T1) Holistic Analysis of 4D Trajectory Dynamics: As several
phenomena can be only observed in the entire 4D phase space, do-
main scientists need to: (i) have an overview of the entire space;
(ii) detect alternations in trajectory behaviors across subspaces; (iii)
explore and analyze where, how, and why these occur; (iv) drill
down to subspaces. Instead of using static 2D or 3D phase por-
traits, they require an integrated approach to navigate and transit
across the entire dimensionality of the phase space (T1.a). Addi-
tional features, e.g., slow vs. fast behavior, need to be discovered
and highlighted for further exploration (T1.b).

(T2) Dissected Analysis of 4D Trajectory Dynamics: Several
phenomena can only be observed in distinct subspaces of the tra-
jectories or in smaller segments thereof. As the behavior of the tra-
jectories is not always known a priori, domain scientists require a
mechanism to drill down interactively to a dissected analysis view
of the phase space that localizes segments of interest (T2.a). This
needs to be summarized in a comprehensive representation (T2.b),
where navigation is possible (T2.c).

(T3) Integration of Knowledge Discovery with Generation of
Phase Space Illustrations and Animations: In the current work-
flow, mathematical domain experts often use manual illustrations
for investigation, education, or externalization purposes. To reduce
the manual and mental effort of domain scientists, functionality for
meaningful illustrations and animations needs to be integrated with
the interactive trajectory computation and representation.

4. Related Work

Several previous works have addressed the exploration of dynam-
ical systems [AS83, GWM∗96, WLG97] or objects with a dimen-
sionality higher than three [HIM99]. All these approaches propose
to employ multiple subspace projections or additional encodings
on the 3D space to incorporate the fourth dimension. For more than
three dimensions, parallel coordinates [Ins85] have been employed
by Wegenkittl et al. [WLG97] and Grottel [GHWG14]. None of
these approaches can fully provide the required functionality of a

combined holistic and dissected exploration and analysis of the 4D
phase space, as well as the ability to integrate knowledge discovery
with the generation of illustrations and animations.

To tackle a dimensionality higher than 3D, previous work
has been conducted also concerning discrete data—rolling the
dice [EDF08] being the most relevant one. It is an interac-
tive method for the exploration of multidimensional data through
queries. It is based on a scatterplot matrix that provides an
overview, while supporting interactive navigation in the multi-
dimensional space by animated transitions. Animated transitions
have been investigated in several other works for the exploration
of discrete data [FFT88, RMC91, VWVH∗07]. Still, our focus is
on strategies for transiting between continuous data—in particular,
approaches that employ slicing through high-dimensional data, ap-
proaches that employ projections, and hybrids thereof.

HyperSlice [vWvL93] is the first method to depict multiple two-
dimensional slices in a trellis plot for the visualization of high-
dimensional functions. This is done around a point of interest, com-
mon to all 2D slices. The approach is local in nature—similar to
other multidimensional strategies, such as the grand tour [Asi85].
It requires to repeatedly probe the function, in order to simulate
a global view on the data. Hypermoval [PBK10] is another slic-
ing approach, which is designed with a strong focus on modeling
validation. This is done with 2D or 3D projections of the involved
high-dimensional scalar functions around a point of interest. In all
cases, only a localized view is provided.

As opposed to slicing approaches, several methods provide
a global view on the functions, such as continuous scatter-
plots [BW08], continuous parallel coordinates [HW09], or profile
contour plots [HKC14]. Here, density fields are mapped to either
2D or 3D representations. However, in our case, we are interested
in the function itself—not in density fields. Other global views in-
clude focus+context approaches like PolarEyez [JN02]. Reduction
techniques, such as the HyperCell [dSB02], take lower-dimensional
representations as basis for the visualization of high-dimensional
spaces. In HyperCell, the user determines 1D to 3D cells, i.e., sub-
spaces, where operations like switching, rotating, and brushing are
possible. In the Worlds Within Worlds approach [FB90], nested het-
erogeneous coordinate systems of lower dimensions enable to view
and manipulate high-dimensional functions in arbitrary, nested, in-
teractive boxes. Another projection-based method is proposed by
Nouanesengsy et al. [NSSV09], where the high-dimensional space
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is projected onto 2D plots, showing changes of the different param-
eters. In all these cases, selected projections with reduced dimen-
sionality are offered as static views to the user. An overview on
the entire dimensionality, and an easy transition between the repre-
sented subspaces is not possible.

To balance between local and global approaches, Torsney-Weir
et al. [TWSM17] propose the Sliceplorer, where 1D line plots con-
stitute the central view to show changes in a single dimension. By
probing through the function and showing all slices in a projection,
they obtain a hybrid that offers both global (through projections)
and local (through slicing) views on the underlying data. Later,
they propose Hypersliceplorer [TWMSK18], which works with 2D
slices of multi-dimensional shapes. Yet, transitions between sub-
spaces and the generation of illustrations and animations are still
not feasible. These, though, are very important in the application of
biological dynamical systems for understanding the mathematical
behavior and specific phenomena in the trajectories. Other hybrid
categories include exploded view diagrams [KLMA10], while pure
topological approaches [CSA03, GBPW10, CLB11, BP18] are also
available, but out of the scope of this work.

Concerning interaction, our work revolves around seamless tran-
sitions [TMB02, HR07] and multiple coordinated views [BC87,
BMMS91, Wil08]. Our domain experts intend to interact with 4D
trajectories in phase space and visually inspect them through differ-
ent views. However, our domain scientists require to perform their
visual analysis in many different subspaces and their intermediate
transition stages. Having multiple coordinated views only would
not be sufficient, given the limited screen space. Therefore, we pro-
vide a different interaction concept based on animated navigation
and seamless, continuous transitions—related to the work of Jianu
et al. [JDL09], Miao et al. [MDLI∗18] and Sorger et al. [SMR∗17].

5. The Design of ManyLands

We propose ManyLands for the exploration and analysis of pre-
computed 4D trajectories from continuous-time dynamical sys-
tems of biological interest. The concepts in ManyLands have
been inspired by the book Flatland: a Romance of Many Dimen-
sions [Abb84]. The mathematical domain scientist—as another
Square—visits and navigates across all Lands, i.e., subspaces, and
their respective dimensions. We introduce three different Lands: 4D
HyperLand, 3D SpaceLand, and 2D FlatLand. We also include an
additional linked diagram, called TimeLines. The design of Many-
Lands takes into consideration the framework proposed by Gle-
icher [Gle16] regarding comprehensibility in modeling.

The initial view in ManyLands shows the entire 4D dimension-
ality of the system in HyperLand (Figure 1a). Represented as a
tesseract, it shows the morphology of the 4D mathematical sys-
tem in a Schlegel diagram [Som29]. From the 4D space, the do-
main expert can smoothly travel to all lower-dimensional Lands,
which are built upon a polytope concept. A space with n dimensions
(n > 0) is composed of a number Em,n of m-dimensional (n > m)
subspaces [Cox73], given by:

Em,n = 2n−m
(

n
m

)
, (2)

where
(

n
m

)
= n!

m!(n−m)! and n! denotes the factorial of n. A tesser-

act (n = 4) based on Eq. 2 contains eight cubes (m = 3) and twenty-
four squares (m = 2). When considering symmetries and rotations
in space redundant, the decomposition of a tesseract will result
in four unique cubes and six unique squares. This decomposition
of subspaces is shown in Figure 4, where redundancies have been
omitted only for the squares in (a), and for cubes and squares in
(b). From the HyperLand (Section 5.1), the domain scientists can
smoothly travel to SpaceLand, by unfolding the tesseract into its
corresponding 3D cubes (Figure 1b, Section 5.2). They can fur-
ther unfold the cubes into a representation consisting of a ma-
trix of 2D plots, called FlatLand (Figure 1c, Section 5.3). Time-
Lines is an additional linked diagram that shows the graphs of all
the variables of the dynamical system over the time axis t (Fig-
ure 1d, Section 5.4). The navigation across Lands is achieved with
smooth, animated transitions, motivated by the nature of the data
and the tasks. TimeLines are linked to the Lands through brush-
ing and linking [BC87, BMMS91, Wil08] (Section 5.5). We show
how ManyLands support the domain expert in their workflow (Sec-
tions 5.6–5.8).

5.1. HyperLand

Given the mathematical problems investigated by our domain sci-
entists, we need a basis for a single-view analysis of 4D trajecto-
ries, which as a whole explores all phase space dimensions. To this
end, we created HyperLand. In HyperLand, the trajectory of a 4D
dynamical system is displayed inside a tesseract (Figure 1a). To dis-
play a 4D object on a 2D screen, this object must be first projected
into a 3D space—from 4D to 3D space, and then to 2D space.

4D to 3D projection: The projection from 4D to 3D space is sim-
ilar to the one from 3D to 2D space. To project a 4D object to 3D
space, each vertex of the object must be multiplied by the word
matrix, the view matrix, and the projection matrix. Both the word
matrix and the view matrix can be defined by multiplications of
rotation and translation matrices. In 4D space, objects can be ro-
tated around six planes—namely, the XY -, Y Z-, XZ-, XW -, YW -,
ZW -planes. For instance, the rotation in homogeneous coordinates
around the XY -plane is given by the matrix:

RXY =


cos(α) sin(α) 0 0 0
−sin(α) cos(α) 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , (3)

where α denotes the rotation angle. The rotation matrices around
the other planes are defined analogously. The translation in 4D
space is given by the matrix:

T =


1 0 0 0 dx
0 1 0 0 dy
0 0 1 0 dz
0 0 0 1 dw
0 0 0 0 1

 , (4)

where dx, dy, dz, dw denote the translation distances along x, y, z,
and w axes, correspondingly. By applying a 4D projection matrix to
the object, we obtain the result in the 3D space. The 4D projection
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Figure 4: Two strategies for smooth, animated transitions between HyperLand, SpaceLand and FlatLand. In (a) 3D symmetries are pre-
served, but 2D symmetries are omitted, while in (b) 3D and 2D symmetries and rotations are disregarded.

is given by the matrix:

P4D =


n
r 0 0 0 0
0 n

t 0 0 0
0 0 n

d 0 0
0 0 0 − f+n

f−n − 2 f n
f−n

0 0 0 −1 0

 , (5)

where n denotes the near clipping plane; f is the far clipping plane;
and r, t, d are the dimensions of the truncated pyramid frustum
(width, height, and depth).

3D to 2D projection: The object is subsequently projected into 2D,
by a conventional 3D-to-2D perspective projection matrix. The 3D
projection parameters do not necessarily repeat corresponding pa-
rameters in the 4D projection. For example, the 4D and 3D cameras
can have different viewing angles, positions, and clipping planes.

Encoding: To encode the perspective distortion of a 4D object in
the thickness of the employed primitives, we use 3D objects, such
as cylinders and spheres, for rendering the scene (Figure 1). We as-
sign a unique Deuteranopia-safe color to each of the axis-aligned
edges of the tesseract based on their orientation in the 4D space
to denote the four variables of the system (Figure 1). As requested
by the mathematical domain scientists, the axes are labeled accord-
ing to the domain convention, namely x, y, z, and w for the four
variables, but the labels can be changed by the user if required.
Axes scaling can be incorporated in the scene, although in most
of the cases all variables have already undergone nondimensional-
ization [VGM07] and they are dimensionless. By standardizing the
proportions of the tesseract, we provide the user with a familiar de-
piction of the trajectories. The user can inspect the object in 4D and
3D space with decoupled rotation operations. The 3D rotations are
performed in a conventional way through mouse interaction, while
4D rotations are performed using sliders in the interface.

5.2. SpaceLand
For 3D trajectory analysis, mathematical domain scientists use
widely 2D and 3D phase portraits of their models. SpaceLand con-
sists of three dimensions and contains 3D subspace projections
from the HyperLand (Figure 1b). It is formed by unfolding the
bounding tesseract of HyperLand and the trajectory into a 3D space
by a smooth transition between spaces, as it will be described in
Section 5.5. There are two alternative representations of Space-
Land, between which the user can switch. In one representation, the

mathematical model is shown with eight 3D cubes, containing all
eight projections, i.e., subspaces, of the 4D dynamical system (Fig-
ure 4a), as discussed in the description of Eq. 2. These plots are con-
nected at their faces. All together, they form a so-called Dalí Cross.
The name is due to a resemblance to the cross in the artwork Corpus
Hypercubus [Dal54] of Salvador Dalí. When unfolding HyperLand
to SpaceLand, the resulting Dalí Cross contains symmetric cases,
which represent redundantly the same 3D spaces—analogously to
unfolding a 3D cube into its 2D faces. A second representation ex-
cludes symmetric plots from the Dalí Cross and consists of only
four unique 3D cubes (Figure 4b). Transiting directly from 4D to
the reduced SpaceLand might be intuitively challenging [HR07],
as we discuss in Section 5.5. We, therefore, leave it up to the users
to select between a Dalí Cross or a reduced SpaceLand. We further
enable a focus+context approach [CMS99]. To make the transition
between HyperLand and SpaceLand smooth and intuitive, all en-
codings, e.g., color encodings and labels, are preserved [HR07].

5.3. FlatLand

Static 2D phase portraits are conventionally used by mathematical
domain scientists, as shown in Figure 2. The tesseract representa-
tion of HyperLand consists of twenty-four 2D faces. As discussed
in the description of Eq. 2, omitting redundancies results into six
unique 2D faces. A contiguous arrangement of the unique faces of
all 3D cubes produces FlatLand, as the result of a smooth unfold-
ing transition from SpaceLand (Figure 1c), following the principles
of Section 5.5. This layout represents all combinations of 2D sub-
spaces in a trellis plot configuration [Cle93]. To preserve the men-
tal model between the spaces [HR07], the FlatLand representation
inherits all visual encodings from the previous Lands.

5.4. TimeLines

Apart from phase portraits, mathematical domain scientists also use
representations that illustrate the temporal evolution of biological
system variables (Figure 2c). The view showing the values of the
trajectory variables vs. time is called TimeLines (Figure 1d). Ob-
taining TimeLines with a smooth transition from FlatLand cannot
be achieved with simple unfolding operations that do not interfere
with our perception [HR07]. A possibility would be to adopt mech-
anisms, such as unfolding and transiting the trajectories in Flat-
Land to one-dimensional subspaces, similar to the 1D slices of
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Sliceplorer [TWSM17]. This, however, would violate significant
principles of animation [TMB02, HR07], as it will be discussed in
Section 5.5. Therefore, we decided to have TimeLines as a separate
static, but linked view and to employ transitions only between the
4D, 3D, and 2D subspaces. TimeLines are linked to the other Lands
through brushing and linking [BC87,BMMS91] and inherit also all
visual encodings from them. An additional advantage of the linked
TimeLines view will become obvious in Section 5.7. There, Time-
Lines are employed to dissect, explore and analyze local system
features, supporting the completion of task (T2).

5.5. A Journey Across Lands

A straightforward approach to explore all available subspaces
would be to use multiple coordinated views [WBWK00]. In our
case, this would require a significant amount of screen space. For
example, for the simple case of a 4D system, four different views
would be required. We would need one view for the 4D subspace,
one for the four 3D subspaces, one for the six 2D subspaces—
excluding symmetries and rotations—and one for the TimeLines.
This would also require a significant amount of mental effort, e.g.,
when tracking the temporal development of a 4D trajectory. Given
the temporal evolution of the systems, the varying dimensional-
ity along segments of the trajectories and the interest in localizing
where the behavior of the trajectories alternates, we employ smooth
transitions between the different subspaces. Smooth, animated tran-
sitions are of particular importance for tracking and understanding
the current state of the system, and at the same time constitute the
interactions between the system variables.

Although animation has been often considered to be a con-
troversial topic [BB99, HR07, RFF∗08], animated transitions can
be beneficial for providing insights, especially for tracking—as
long as the principles of congruence and apprehension are re-
spected [TMB02, HR07]. According to the congruence princi-
ple [HR07], the structure and content of an animation must cor-
respond to the desired structure and content of the mental repre-
sentation. To this end, intermediate interpolation stages, e.g., be-
tween Lands, retain valid data graphics. Also, we use consistent
mappings and visual encodings by having standardized transitions
across graphic types. We respect correspondence and avoid ambi-
guity across transitions, e.g., for the axes labeling and coloring,
and the trajectory attributes. According to the apprehension prin-
ciple [HR07], the structure and content of the animation must be
readily and accurately perceived and comprehended. To this end,
we group similar transitions together and minimize occlusion, e.g.,
of redundant spaces, during transitions. Our transitions remain pre-
dictable and simple, but when more complex transitions are needed,
such as in the SpaceLand to FlatLand transition, we use staging,
i.e., grouping. The speed of transitions in ManyLands is at any case
user-controlled. For a smooth transition between the 4D, 3D, and
2D subspaces, the user interacts with a simple slider that can be
moved across different subspace configurations and their interme-
diate stages. The slider is annotated to facilitate traveling from one
Land to another one, and slider snapping to Land positions is im-
plemented. Other standard interactions, i.e., rotating, zooming, and
panning, are possible in all Lands, but always independently from
transitions. Hereby, we discuss all Land transitions.

HyperLand to SpaceLand: HyperLand initially morphs into a
Dalí Cross representation, which morphs, subsequently, into a
reduced SpaceLand (Figure 4a). Without the intermediate Dalí
Cross (Figure 4b), a sudden transition would be less intuitive
and less easy to follow, as suggested by the apprehension princi-
ple [TMB02, HR07]. Still, the users can hide the symmetric sub-
spaces within the Dalí Cross, and can travel directly to the reduced
SpaceLand (Figure 4b). The transition employs staging, in accor-
dance with the congruence and apprehension principles. First, the
trajectory is replicated several times according to the number of the
involved subspaces (eight cubes for the Dalí Cross and four for the
reduced case). We need this to move each instance of the trajectory
into the corresponding 3D cube. Then, each trajectory instance is
projected into the respective cube. This projection is animated, so
that the user can track the movement of the trajectory. Afterward,
each 3D cube is rotated around one of its faces in the direction that
will bring the w-coordinate of each cube to a constant value. During
this unfolding, the 4D camera must be moved into a position where
the camera points towards the w-axis. So far, all operations are per-
formed only in 4D space. Thus, during the animated unfolding, the
dynamical system data are shown unaltered. After the animated un-
folding, all vertices of the tesseract are lying on the same 3D space,
i.e., their w coordinates are equal. Therefore, the w coordinate is
discarded and the object is projected into 3D space.

SpaceLand to FlatLand: The transition between SpaceLand and
FlatLand is performed in three stages (Figure 4). First, symmet-
rical 3D cubes are faded out in the animation, to remove redun-
dant information. Second, the 3D trajectories are replicated into
several instances and projected onto the faces of the 3D cubes (Fig-
ure 1). Third, the faces are rotated into the image plane. During this
rotation, the 3D camera is also orthogonally aligned, providing a
distortion-free view of FlatLand (Figure 1c).

Animations showing all transition stages in detail are available in
our repository [AKS∗], and in the supplementary material.

5.6. Holistic Analysis of 4D Trajectory Dynamics (T1)

For the holistic exploration and analysis of the trajectory behavior,
domain scientists need an overview of the entire 4D phase space
and its subspaces to be able to better observe certain phenomena.
This is also important for the detection of alternations in trajectory
behaviors across subspaces, and exploring where, how, and why
these occur. A thorough exploration of all subspaces and the ability
to drill down to each one of them is also required. Our approach
for solving these subtasks involves primarily the ability to tran-
sition smoothly between Lands (T1.a). This is done as described
in Sections 5.1–5.5. Apart from the design of the Lands and the
ability to transition between them, we need to convey further infor-
mation about the dynamical system (T1.b). For example, we need
to convey the presence of slow-fast dynamics, i.e., a pronounced
phenomenon during which some variables are changing faster than
others, the local dimensionality, or switching phenomena. This pro-
vides mathematical domain scientists with important knowledge on
how and where to start their analysis. We use an intuitive strat-
egy, where we dissect the trajectory based on one of these three
manifestations. The slow-fast behavior, i.e., the velocity vector at
each point along the trajectory is given by the right-hand side of the
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Figure 5: Depiction of the selection mechanism using brushing and linking between TimeLines and the Lands of ManyLands. Here, we use a
HyperLand example. Each selection in TimeLines, denoted with (a), (b), (c), (d) is highlighted in HyperLand to denote the respective segment
in 4D. Underneath TimeLines, we depict the phase space compasses (e). These are pictograms, representing respective segments (and their
trajectory characteristics) from the dissection of TimeLines.

ODE system in Eq. 1. The dimensionality is the number of active
(non-zero) variables at each trajectory segment. The derivation of
switching behaviors is not straightforward, as it is often computed
for each model individually. We, therefore, give an initial sugges-
tion to the user based on changes in the slope along the trajectory.

Subsequently, we encode this information directly on the trajec-
tory with colors and glyphs. For the color encoding of the switches
or the slow-fast behavior, we use a logarithmic, perceptually uni-
form, greyscale colormap [BHH03]. The colormap is truncated on
the white side to not interfere with the background color of the
scene. The greyscale choice is due to the presence of other colors
in the scene, e.g., to encode the axes. We chose this encoding as
an “inking” metaphor: the slower a point is moving on the trajec-
tory, the darker is its ink footprint. The logarithmic scaling is used
to compensate for the—sometimes—extremely fast or slow motion
along the trajectory. For the glyph encoding of the dimensionality,
we use a corresponding number of arrows, e.g., for a 2D segment,
we show two arrows. These two visual encodings are used across all
Lands to preserve semantics, and demonstrated in the HyperLands
of Figure 5. A fly-through probe that travels along the trajectory in-
dicates the temporal evolution of a trajectory, similar to the colored
dots employed in Figure 2. In the Lands, this is a sphere, and in
TimeLines, a line sliding across time.

The combination of smooth transitions across HyperLand,
SpaceLand, and FlatLand with a bi-directionally interactively
linked view on the TimeLines enables mathematical domain scien-
tists to perform task (T1). They are now able to effectively interact
and transit between different visual representations of the dynam-
ical system. The smooth transition between the various Lands and
link to TimeLines provides consistent information across the differ-
ent subspaces that conveys to the user a holistic view on the entire
space of the 4D trajectory.

5.7. Dissected Analysis of 4D Trajectory Dynamics (T2)

The localized exploration and understanding of dynamical systems
trajectories and their underlying biological processes is also im-
portant. Several phenomena may be observed only in smaller or
lower-dimensional regions, i.e., trajectory segments. To provide a
strategy for the easy localization, exploration, and analysis of the

dynamical system representation across subspaces and trajectory
segments, we extend the TimeLines to be used as a selection mech-
anism for subspaces/segments of interest.

As mentioned also for the first task, we can dissect the
trajectories represented in TimeLines into segments, depending
on their dimensionality, slow-fast or switching behavior (T2.a).
With trajectory dissections available, we propose an additional
representation—the phase space compasses, or simply, compasses.
These are abstracted, small-multiple tesseract pictograms [DBT88]
that depict the active variables (and relevant subspaces) of the cor-
responding trajectory segment [Cle93]. Each individual compass is,
in essence, an orthogonal projection of the tesseract to the screen
space, given by the isometric projection matrix:

P =


1 0 cos(α) −cos(β) 0
0 −1 sin(α) sin(β) 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , (6)

where α and β are the orientations of z and w axes in screen space.

The compasses (T2.b) are configured in a trellis representation,
under the respective segments of the TimeLines (Figure 5e). If a
segment of a trajectory is inactive in one of its four dimensions,
then it “lives” in a 3D domain, and a compass denoting the respec-
tive 3D subspace is created (Figure 5b–d). A trajectory segment
can be mapped together with its characteristics on such a com-
pass, using the same visual encodings as within the Lands. This
is shown in Figures 1e and 5e in greyscale. Hovering over the com-
passes provides a magnified view, to enhance visibility, e.g., when
there are too many segments or when the display size is small. Se-
lecting a compass provides a focus+context view on the respective
segment of the trajectory and a smooth, continuous transition to
the respective subspace (T2.c). Afterward, through the interaction
described in Section 5.6, the domain scientist can navigate across
other subspaces of the segment. Arbitrary selections of segments
on the TimeLines are possible within and across all Lands, using
brushing and linking [BC87, BMMS91, Wil08] (Figure 5). The ab-
stracted representation of dissections with compasses offers easier
navigation across subspaces and segments. It also facilitates inter-
action and the selection of trajectory segments.
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5.8. Integration of Knowledge Discovery with Generation of
Phase Space Illustrations and Animations (T3)

The final task for mathematical domain scientists is to generate
meaningful, scientific illustrations for further analysis, for educa-
tion and externalization of their findings, or as a support to their
mathematical proofs. These illustrations are usually based on their
knowledge of the dynamical systems. Now, they can integrate the
newly generated knowledge from the visual analysis, as performed
in (T1–2), with the generation of illustrations in the web-based plat-
form of ManyLands. We employ a flexible web-based design space,
where users can specify the appearance of their representations.
Rotations, alterations of the rendering scene, and aesthetic changes
to the representations are feasible, with the use of simple, interac-
tive sliders. The results of our illustration generation functionality
can be seen throughout all the figures of this paper. Analogously,
animations can be generated.

6. Results and Evaluation

After the design of ManyLands, we conducted an informal evalua-
tion with four domain scientists, following the guidelines of Isen-
berg et al. [IIC∗13]. The domain scientists are researchers in ap-
plied mathematics, working on the exploration of 4D dynamical
systems of biological interest. Their field experience varies from
low (student with few years in the field) to very high (professor
with > 30 years in the field). Two of them have normal and two
normal-to-corrected vision. One of the participants had been ac-
tively involved in the design of ManyLands. At the beginning of
the evaluation session, we introduced ManyLands to the domain
scientists, and we demonstrated the basic functionality and main
components of the framework. Afterward, the domain experts pro-
ceeded with the investigation of three use cases. A visual environ-
ment for the exploration and analysis of the respective 4D dynam-
ical systems was simulated. We used the think-aloud method, al-
lowing the experts to comment and discuss visualizations and po-
tential insights. Discussions among themselves were allowed, like
in a real-life collaborative scenario. By providing ManyLands as
a web-based application, domain scientists could interact with the
systems in real-time and generate custom illustrations. All three
tasks of Section 3 were executed, allowing domain experts to rea-
son about the employed visual encodings, interaction mechanisms,
and potential findings (Section 6.1). Subsequently, our domain ex-
perts completed individually a questionnaire to give us feedback on
their experience with ManyLands (Section 6.2).

6.1. Use Cases

In this section, we present three use cases for the exploration and
analysis of 4D trajectories with ManyLands. The dynamical sys-
tems and initial conditions of these cases were provided by the eval-
uation participants, based on what phenomena they are currently
interested in. These are documented in detail in the supplementary
material and in our repository [AKS∗]. For the investigation of the
trajectories, the domain scientists employed ManyLands, as they
would do in a real-life analysis scenario. The findings presented in
this section have been documented by the domain scientists. Given
the focus of a visualization paper, these are not meant for direct in-
ferences on the dynamical systems (even more, on the underlying

biological systems)—they are, rather, exemplifications of whether
(and how) ManyLands enables them to conduct their analysis.

Use Case A—Analysis of Bipolar Disorder: The Goldbeter
model of bipolar disorder [Gol11] is explored in the first use case.
It is a 4D system of ODEs describing the dynamics of bipolar
disorder, i.e., the alternations between manic and depressive state.
For certain initial conditions, the model exhibits oscillatory behav-
ior, i.e., mania and depression alternate periodically. Moreover, the
four variables of the system change over different time scales, as
shown in Figure 6f. The first straightforward observation is that
the system exhibits switch-like oscillations, as seen in the Time-
Lines (Figure 6f). By initializing the HyperLand and SpaceLand
view, the corresponding trajectory is presented in the phase space
(Figure 6a–b). The color encoding of the trajectory remains mostly
grey and does not show big differences in the speed of the trajec-
tory. Starting with a certain initial condition, the orbit converges
to the so-called limit cycle, which can be seen easily when mov-
ing to FlatLand with the “loop-like” geometry (Figure 6c). This
phenomenon is already visible in HyperLand and SpaceLand (Fig-
ure 6a–b). Extracting the segments of the trajectories indicated
in the TimeLines (Figure 6f) and inspecting the respective com-
passes shows also the repetitive pattern of the closed trajectory
(Figure 6d–e). This confirms that the observed oscillations are of
limit cycle type. The analysis of the bipolar model trajectories in
ManyLands revealed the switch-like nature of the model dynamics
and confirms results obtained from a prior geometric analysis.

Figure 6: Analysis conducted by the domain scientists for a trajec-
tory, describing bipolar disorder [Gol11]. With (a)–(f), we denote
the visual analysis steps, as described in Section 6.1, Use Case A.
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Figure 7: Analysis conducted by the domain scientists for a trajectory, describing the NF-κB signaling pathway [KJS06]. With (a)–(e), we
denote the visual analysis steps of Section 6.1, Use Case B.

Use Case B—Analysis of NF-κB Pathway: A trajectory from
the mathematical model describing the NF-κB signaling path-
way [KJS06] is explored in the second use case. The NF-κB system
plays a key role in regulating our immune response to infection.
When the NF-κB system is activated, the model exhibits damped
oscillations for certain initial conditions. This means that the tran-
scription factor NF-κB is located in and out of the nucleus in a peri-
odic fashion, and finally stays in the cytoplasm, i.e., the system set-
tles at a stable equilibrium point. In ManyLands, two numerically
computed solutions for two different initial conditions have been
analyzed simultaneously. The solutions exhibit a transition towards
the stable equilibrium point, as shown in HyperLand, SpaceLand,
and Flatland (Figure 7a–c, marked with the red dots). This transi-
tion happens in a switch-like manner, i.e., the variable x changes its
values from non-zero to zero in a repeated fashion and eventually
remains at a nonzero constant value, as shown in TimeLines (Fig-
ure 7e). Also, the compasses (Figure 7e) show that some parts of
the oscillatory phenomena can be observed in specific subspaces,
e.g., the fast (light grey) behavior at the beginning of one trajec-
tory “lives” in 4D (Figure 7d). The application of ManyLands to
the NF-κB model enabled the geometric analysis of its complicated
4D dynamics—also, for two solutions. In particular, the dissections
in TimeLand support and complement the mathematical model dis-
section to segments of interest in phase space.

Use Case C—Analysis of Peroxidase−Oxidase Reaction: The
Olsen model for the peroxidase−oxidase reaction [KS15] is ex-
plored in the third case. The Olsen model is a chaotic attractor sys-
tem, for which domain scientists often look only at specific com-
binations of the ZW , XZW and XYW spaces. The 4D view of Hy-
perLand (Figure 8a) can confirm at a glance the chaotic attractor
behavior, as denoted by the multitude of loops. By transiting to
FlatLand—in particular, to the ZW space—the trajectory comes
repeatedly close to the origin and spends longer intervals of time
there (Figure 8b). With focus+context on SpaceLand, the XZW
(Figure 8c) and XYW spaces (Figure 8d) are illustrated. In XZW ,
the system is a chaotic attractor, while in XYW it is a transient.
Practically, the system exhibits a slow motion and makes a long

excursion in the XY ZW space before returning to (Z,W ) = (0,0).
Additionally, the initial part of TimeLines shows changes in speed
(Figure 8e). The second part (Figure 8f) manifests periodic behav-
ior, while in-between a switching behavior can be also noticed (Fig-
ure 8g). ManyLands facilitated the analysis of the complex 4D dy-
namics of the Olsen model, supporting a geometric analysis of the
chaotic attractor and revealing its oscillatory behavior.

In the three explored cases, the transitions from one space to an-
other (T1) and the interactive dissection with the compasses (T2)
have proven to be very helpful for the analysis and understanding
of the mathematical behavior of the systems, as well as for the cre-
ation of the aesthetic, scientific illustrations of Figures 6–8 (T3).

6.2. User Experience
For the evaluation of the user experience, we designed a question-
naire. The first part was related to tasks (T1-3). Each question re-
quired an open answer, and a grading in a Likert scale (++ to−−)
for the perceived effectiveness, efficiency, and satisfaction. In Fig-
ure 9, we summarize the results of the evaluation. One of the par-
ticipants was involved in the design of ManyLands—and these re-
sults are presented separately. The visualizations received positive
grades for all tasks. Tasks (T1.b) and (T3) received neutral grades
(=) by the most experienced domain scientist. For task (T1.b), the
reason is that they would like to map additional features onto the
trajectory. For task (T3), the scientist commented that this func-
tionality should be tested also with other systems, where there is no
prior understanding of the dynamics—as opposed to now, where
the dynamics were already known. The most appreciated function-
alities were the animated, smooth transitions and the facilitated in-
teraction for trajectory exploration.

In the second part, the participants were asked to compare Many-
Lands to what they are currently using and to evaluate the over-
all usefulness of our tool—including strengths, weaknesses, limi-
tations and future improvements. They commented that “DYNAM-
ICA allows visualizations only in 3D and 2D. ManyLands gives
new possibilities and access into 4D”. All participants agreed that
the visual tool is overall understandable and useful, and that they
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Figure 8: Analysis conducted by the domain scientists for a trajectory, describing the peroxidase−oxidase reaction [KS15]. With (a)–(g),
we denote the visual analysis steps, as described in Section 6.1, Use Case C.

would be able to use it after training: “ManyLands already helps.
It will help even more after reasonable training, due to the ease
of switching between representations”. One participant stated that
“it helps to understand the underlying geometry of the phase space
better, it contributes to the understanding of the model dynamics
and supports a geometric mathematical analysis of a given sys-
tem”. One experienced participant summarized their overall opin-
ion as: “ManyLands has a user-friendly interface for rapid re-
analysis and visualization. By experimenting with different initial
conditions and parameter values, the trajectory plot will update
accordingly; this process will assist the development of better un-
derstanding of model dynamics. In contrast to other dynamical sys-
tems software, it is a straightforward tool for phase space visual-
ization that allows not only to show numerically computed trajec-
tories on a tesseract, but shows also the time evolution of variables.
When needed, all possible variants of 2D and 3D phase portraits
are shown at once. While dynamical systems knowledge is essen-
tial, ManyLands can make a proficient domain scientist more pro-
ductive, while empowering students with limited visual mathemati-

Figure 9: Evaluation outcomes for user experience. Each task
(T1–3) has been graded according to its perceived effectiveness,
efficiency, and satisfaction on a 5-points Likert scale (−− to ++).
We denote the domain expert that was involved in the design of
ManyLands with orange squares, and the others with blue squares.

cal/geometrical skills.”. The potential of ManyLands is, according
to the evaluators, the integrated ability to transition across Lands,
while interactively inspecting TimeLines. Improvement suggestions
were related to redefining approximations to reflect better the math-
ematical descriptions, while one participant suggested that saving
viewpoints and snapping back to them would be valuable.

6.3. Discussion

Our evaluation and the use cases conducted by the mathematical
domain experts showed that ManyLands introduces new capabili-
ties into the workflow of phase space exploration and analysis of
4D trajectories. This positive outcome is partially because our ap-
plication has specifically targeted the requirements of Section 3.
The introduction of the 4D representation and the use of smooth,
animated transitions were proposed by our domain scientists as a
suitable solution to their current issues with the use of 2D and 3D
phase portraits. For this reason, and as discussed in Section 5.5,
we did not investigate further or compare to other obvious alter-
natives, such as multiple coordinated views [BC87]. Additionally,
the visualization literacy of our intended users has also been con-
sidered. If ManyLands were to be extended to other application
domains, an additional evaluation considering all potential alter-
natives should be conducted. In this case, scalability beyond 4D
systems and beyond a small number of trajectories should also be
regarded. In the present context, this was considered out of scope
by our domain scientists. Scalability to higher-dimensional systems
is currently not relevant given their particular focus on 4D systems
of biological interest. Considering a vast number of trajectories is
also neither biologically justified nor mathematically relevant for
them. The trajectories relate to specific initial conditions reflecting
biological setups. Therefore, looking into all possible solutions is
not necessary, and only in few cases, a small number of them (2-3)
might be investigated simultaneously. Parameter sensitivity analy-
sis has also not been investigated, for the same reasons. We propose
these topics for future work in Section 7.
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7. Conclusions and Future Work

Observing the geometry of dynamical systems is anticipated to pro-
vide mathematical domain scientists with a significant understand-
ing of the dynamics, and potentially, of underlying modeled biolog-
ical processes. Mathematical experts are now restricted to the de-
tached use of computer-generated 2D or 3D phase portraits and of
hand-drawn illustrations, hampering an integrated analysis of sys-
tem trajectories. ManyLands is a new visualization tool to support
domain scientists to understand, analyze, and illustrate trajectories
of 4D dynamical systems that describe biological processes.

There are several promising avenues for future research. Most
importantly, the scalability of our proposed approach must be in-
vestigated with strategies to accommodate dynamical systems be-
yond 4D, and the comparison of multiple trajectories. These two
topics were currently not relevant for our collaborating domain sci-
entists as they are not encountered in their applications. However,
they are ubiquitous in many other application domains, e.g., in the
physical and environmental sciences. To support systems higher
than 4D, combining ManyLands with rolling the dice [EDF08]
would facilitate querying and navigating the entire n-dimensional
(n > 4) phase space. Alternatively, the use of non-linear em-
beddings [MH08] could also be investigated. To compare multi-
ple trajectories emerging from different initial conditions, tech-
niques from ensemble visualization could be incorporated, e.g.,
contour boxplots [WMK13] and curve boxplots [MWK14], or ap-
proaches from weather forecast ensemble visualization [FKRW16,
FKRW17]. Other directions include the smart incorporation of ad-
ditional topological features in the representations and improve-
ments regarding visual perception, e.g., by depth-dependent ha-
los [EBRI09], or by illumination and shadowing [EHS13]. Many-
Lands has opened interesting directions for the exploration of the
phase space, enabling the analysis of 4D trajectories of systems that
model biological processes.
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